Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610410

RESUMO

Frameworks for human activity recognition (HAR) can be applied in the clinical environment for monitoring patients' motor and functional abilities either remotely or within a rehabilitation program. Deep Learning (DL) models can be exploited to perform HAR by means of raw data, thus avoiding time-demanding feature engineering operations. Most works targeting HAR with DL-based architectures have tested the workflow performance on data related to a separate execution of the tasks. Hence, a paucity in the literature has been found with regard to frameworks aimed at recognizing continuously executed motor actions. In this article, the authors present the design, development, and testing of a DL-based workflow targeting continuous human activity recognition (CHAR). The model was trained on the data recorded from ten healthy subjects and tested on eight different subjects. Despite the limited sample size, the authors claim the capability of the proposed framework to accurately classify motor actions within a feasible time, thus making it potentially useful in a clinical scenario.


Assuntos
Aprendizado Profundo , Humanos , Atividades Humanas , Atividades Cotidianas , Engenharia , Voluntários Saudáveis
2.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474980

RESUMO

This study investigates the biomechanical impact of a passive Arm-Support Exoskeleton (ASE) on workers in wool textile processing. Eight workers, equipped with surface electrodes for electromyography (EMG) recording, performed three industrial tasks, with and without the exoskeleton. All tasks were performed in an upright stance involving repetitive upper limbs actions and overhead work, each presenting different physical demands in terms of cycle duration, load handling and percentage of cycle time with shoulder flexion over 80°. The use of ASE consistently lowered muscle activity in the anterior and medial deltoid compared to the free condition (reduction in signal Root Mean Square (RMS) -21.6% and -13.6%, respectively), while no difference was found for the Erector Spinae Longissimus (ESL) muscle. All workers reported complete satisfaction with the ASE effectiveness as rated on Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST), and 62% of the subjects rated the usability score as very high (>80 System Usability Scale (SUS)). The reduction in shoulder flexor muscle activity during the performance of industrial tasks is not correlated to the level of ergonomic risk involved. This preliminary study affirms the potential adoption of ASE as support for repetitive activities in wool textile processing, emphasizing its efficacy in reducing shoulder muscle activity. Positive worker acceptance and intention to use ASE supports its broader adoption as a preventive tool in the occupational sector.


Assuntos
Exoesqueleto Energizado , Humanos , Projetos Piloto , Extremidade Superior/fisiologia , Músculo Esquelético/fisiologia , Ombro/fisiologia , Eletromiografia , Fenômenos Biomecânicos
3.
Stud Health Technol Inform ; 302: 962-966, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203545

RESUMO

Foot drop is a deficit in foot dorsiflexion causing difficulties in walking. Passive ankle-foot orthoses are external devices used to support the drop foot improving gait functions. Foot drop deficits and therapeutic effects of AFO can be highlighted using gait analysis. This study reports values of the major spatiotemporal gait parameters assessed using wearable inertial sensors on a group of 25 subjects suffering from unilateral foot drop. Collected data were used to assess the test-retest reliability by means of Intraclass Correlation Coefficient and Minimum Detectable Change. Excellent test-retest reliability was found for all the parameters in all walking conditions. The analysis of Minimum Detectable Change identified the gait phases duration and the cadence as the most appropriate parameters to detect changes or improvements in subject gait after rehabilitation or specific treatment.


Assuntos
Transtornos Neurológicos da Marcha , Neuropatias Fibulares , Humanos , Neuropatias Fibulares/complicações , Reprodutibilidade dos Testes , Marcha , Caminhada , Debilidade Muscular/complicações , Paresia/complicações , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia , Fenômenos Biomecânicos , Articulação do Tornozelo
4.
Stud Health Technol Inform ; 302: 1029-1030, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203573

RESUMO

Ankle-Foot Orthoses (AFOs) are common non-surgical treatments used to support foot and ankle joint when their normal functioning is compromised. AFOs have relevant impact on gait biomechanics, while scientific literature about effects on static balance is less strong and confusing. This study aims to assess the effectiveness of a plastic semi-rigid AFO in improving static balance on foot drop patients. Results underline that no significant effects on static balance is obtained on the study population when the AFO is used on the impaired foot.


Assuntos
Órtoses do Pé , Neuropatias Fibulares , Humanos , Tornozelo , Articulação do Tornozelo , Marcha , Debilidade Muscular , Paresia , Fenômenos Biomecânicos
5.
G Ital Med Lav Ergon ; 43(4): 373-378, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35049162

RESUMO

SUMMARY: Work-related musculoskeletal disorders are among the main occupational health problems. Substantial evidence has shown that work-related physical risk factors are the main source of low back complaints, particularly affecting heavy and repetitive manual lifting activities. The aim of the study is, during load lifting tasks, to explore the correlation between the time domain features extracted from the acceleration and angular velocity signals of the performing subject and the load lifted, and to explore the feasibility of a multiple linear regression model to predict the lifted load. The acceleration and angular velocity signals were acquired along the three directions of space by means of an inertial sensor placed on the subject's chest, during lifting activities with load gradually increased by 1 kg from 0 kg to 18 kg. Successively three time-domain features (Root Mean Square, Standard Deviation and MinMax value) were extracted from the acquired signals. First a correlation analysis was carried out between each individual feature and the load lifted (calculating r); then the time-domain features that proved most representative (strong correlation) were used to create a multiple linear regression model (calculating R-square). The statistical analysis was carried out by means of the Pearson correlation and multiple linear regression model was fed with the most informative time-domain features according to the correlation analysis. The correlation analysis showed a strong correlation (r > 0,7) between six features (three extracted from z-axes acceleration and three extracted from y-axes angular velocity) and the lifted load. The predictive multiple linear regression model, fed with these six features achieved a Rsquare greater than 0,9.The study demonstrated that the proposed combination of kinematic features and a multiple regression model represents a valid approach to automatically calculate the load lifted based on raw signals obtained by means of an inertial sensor placed on the chest. The results confirm the potential application of this methodology to indirectly monitor the load lifted by workers during their activity.


Assuntos
Doenças Musculoesqueléticas , Saúde Ocupacional , Fenômenos Biomecânicos , Humanos , Remoção , Modelos Lineares
6.
Sci Rep ; 10(1): 20127, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208913

RESUMO

Stroke is among the leading causes of death and disability worldwide. Approximately 20-25% of stroke survivors present severe disability, which is associated with increased mortality risk. Prognostication is inherent in the process of clinical decision-making. Machine learning (ML) methods have gained increasing popularity in the setting of biomedical research. The aim of this study was twofold: assessing the performance of ML tree-based algorithms for predicting three-year mortality model in 1207 stroke patients with severe disability who completed rehabilitation and comparing the performance of ML algorithms to that of a standard logistic regression. The logistic regression model achieved an area under the Receiver Operating Characteristics curve (AUC) of 0.745 and was well calibrated. At the optimal risk threshold, the model had an accuracy of 75.7%, a positive predictive value (PPV) of 33.9%, and a negative predictive value (NPV) of 91.0%. The ML algorithm outperformed the logistic regression model through the implementation of synthetic minority oversampling technique and the Random Forests, achieving an AUC of 0.928 and an accuracy of 86.3%. The PPV was 84.6% and the NPV 87.5%. This study introduced a step forward in the creation of standardisable tools for predicting health outcomes in individuals affected by stroke.


Assuntos
Algoritmos , Aprendizado de Máquina , Reabilitação do Acidente Vascular Cerebral/mortalidade , Acidente Vascular Cerebral/etiologia , Idoso , Tomada de Decisão Clínica , Feminino , Humanos , Modelos Logísticos , Masculino , Medicare , Pessoa de Meia-Idade , Mortalidade , Curva ROC , Acidente Vascular Cerebral/mortalidade , Estados Unidos
7.
G Ital Med Lav Ergon ; 42(3): 201-207, 2020 09.
Artigo em Italiano | MEDLINE | ID: mdl-33119981

RESUMO

SUMMARY: Studies and reviews show that the vast majority of students around the world use heavy and uncomfortable backpacks, which could negatively affect their musculoskeletal development or at least generate a non-physiological functional overload. In this regard, non-invasive analyses were carried out on a sample of 150 healthy students aged between 14 and 15 years using a wearable inertial device for gait analysis: G-Walk System by BTS Bioengineering. Each student performed a gait analysis session consisting in a walk of 15 meters along a straight path in two different conditions: free walk and walk with backpack. A backpack with a sturdy backrest, wide and padded straps and abdominal belt with buckle was chosen. The weight inside the backpack was fixed at 9.3 kg in accordance with scientific studies conducted by Stefano Negrini of ISICO (Istituto Scientifico Italiano Colonna Vertebrale). Aim of this work is to understand, through an accurate analysis both instrumental and statistical, if we can talk about differential influence of musculoskeletal type generated by a school backpack full load compared to no backpack, trying to find out if and how much this affects walking both in terms of space-time parameters and detachment from normality values, and in terms of kinematic parameters such as pelvic rotations angles. Results showed a statistically significant difference between the space-time parameters computed in the two different study conditions, moreover a qualitative and quantitative difference was found for kinematic parameters too, which could imply potential musculoskeletal disorders associated with prolonged and long-lasting use of heavy and uncomfortable backpacks. This study has the ambition to raise awareness of this issue in order to extend legislative limits to the "working" environment of children, that is the school, as it is done for working environments adults (D. lgs 81/08 related to manual maintenance of loads).


Assuntos
Fenômenos Biomecânicos/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Estudantes , Caminhada/fisiologia , Suporte de Carga/fisiologia , Adolescente , Desenho de Equipamento , Feminino , Análise da Marcha/instrumentação , Análise da Marcha/métodos , Humanos , Itália , Masculino , Desenvolvimento Musculoesquelético , Doenças Musculoesqueléticas/etiologia , Curvaturas da Coluna Vertebral/etiologia , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...